FROM BIG RIGS TO BUGGIES: A LINCOLN HIGHWAY FOR ALL USERS

APA PA - OCTOBER 20, 2015
1. First Impressions
2. Project History
3. Planning Process
4. Recommendations
5. Implementation
“Route 30 is a mess.”

First line in an article from January 2010 about the corridor written by Tom Knapp, Staff Writer for Lancaster Online
“Route 30 is a mess.”

First line in an article from January 2010 about the corridor written by Tom Knapp, Staff Writer for Lancaster Online
“Route 30 is a mess.”

First line in an article from January 2010 about the corridor written by Tom Knapp, Staff Writer for Lancaster Online

Visioning Plan that generated 6 goals for the corridor

1. Create a Sense of Place
2. Shaping the Experience
3. Delivering the Message
4. Moving around the Corridor
5. Making it Happen
6. Coordinating the Effort
Phase II - “Lincoln Highway Streetscape Plan”
2014-2015

Focuses on designing the streetscape and roadway to fulfill the vision laid out in Phase 1.

Make Lincoln Highway an economically vibrant corridor that is safe, efficient, and beautiful for local residents and visitors.
Using all the feedback we received we looked back at the project vision and created ten planning principles to guide the recommendations for the corridor.
1. Slow Traffic to the Speed Limit
2. Provide Multi-Modal Access Along the Entire Corridor
3. Buffer Sidewalks from Traffic
4. Reallocate Underutilized Right-of-Way for Multi-Modal Access
5. Maintain Consistent Through Lanes
6. Reduce Conflicts
7. Increase Safety with Protected Left Turn Lanes
8. Integrate Signage And Wayfinding at all Scales
9. Create Attractive, Functional Landscaping Incorporating Stormwater Management Facilities
10. Enable Interconnectivity
Apply planning principles to the corridor
Proposed Typical Section

Existing Typical Roadway Section

12' Path
5' Buffer
2' Shoulder
11' Lane
12' Turn Lane
11' Lane
12' Continuous Turn Lane
12' Lane
12' Lane
12' Turn Lane
2' Shoulder
Sidewalk/Buffer Varies

Proposed Typical Section

12' Path
5' Buffer
2' Shoulder
11' Lane
11' Lane
12' Turn Lane
2' Shoulder
6' Sidewalk
Sidewalk/Buffer Varies

Proposed Typical Section
Travel and center turn lane widths are reduced slightly to create space for consistent sidewalks, a multi-use path, and buffers. The lane width reductions have a minimal impact on roadway capacity.
A TYPICAL EXCEPTION
A TYPICAL EXCEPTION
A Typical Exception

After 12’ Asphalt Trail linking Willowdale Drive and American Music Theatre Entrance

Green stormwater infrastructure demonstration project
One-third of all accidents occur here.
After

- New sidewalk
- Gateway signage
- Median with stormwater feature
- New pedestrian crossing at signal
- Multi-use path extension to Flory Park
- All local traffic flows to signal

Western Gateway
Eastern Gateway

Custom Crosswalk Materials

Major Gateway Signage

Landscaped Buffers and Tree Plantings

Crossing Islands
Multi-Modal Connections

- Multi-Use Path
- New Roadway Connection
- On-Road Bike Network
- Off-Road Bike Network
- Open Space
• Provide a road map for the Township, County, and PennDOT

• Flexibility vs. simplicity

• Conservative project cost estimates

• Implementation Matrix Organization
 • Option 1: One big project, all at once
 • Option 2: Implement as individual projects
Option 2: Construct Each Recommendation as a Stand-Alone Project

Re-Stripe New Roadway Section

The conceptual design recommends a new typical cross section for Lincoln Highway between Strasburg Pike and Route 896. The new cross section takes width from the existing centerline turn lane and travel lanes. The new road section can be achieved by simply re-striping the roadway. The resulting cross section is typically six feet narrower that the existing and that space can be allocated to wider shoulders until future construction moves the curbs.

- Re-stripe new lane configuration for the entire corridor including turn lanes and crosswalks. Shoulder widths will increase accordingly.

Construct New Roadway From Oakview Road to Route 896

The construction of the new roadway can be done in conjunction with or independently of the re-stripping, or it can be done as an early action as funding becomes available. The cross section assumes that 25% of the existing curbs will be re-aligned and the other 75% will be pushed toward the center of the roadway. Maintaining existing curbs where possible reduces construction costs by minimizing the need to move utilities and reconstruct the entire right-of-way.

- Construct new roadway
- Construct multi-use path and sidewalks
- Install buffer area landscaping

Implementation option 1:
- Construct the entire roadway from Oakview to Rt. 896 as one project.

Implementation option 2:
- Construct the roadway in sections from one signalized intersection to the next. The average length between intersections is 1/4 of a mile or 1,320 feet. This option can be constructed more quickly than Option 1, but costs more.

Construct New Intersection at Route 30 Bypass off-Ramp

- Reconfigure lanes to maintain consistent through lanes in eastbound direction
- Reconstruct median
- Stripe dedicated left turn at Strasburg Pike
- Install crosswalks at Route 462 and Strasburg Pike

Upgrade the Oakview Road Intersection

- Reconfigure traffic lanes
- Install pedestrian islands and upgraded crosswalk materials
- Install landscaping and street furniture

Implement Action

Tasks
- Implemention matrix
 - early action
 - tasks
 - investment needed
 - suggested partners & funding sources

Investment needed

<table>
<thead>
<tr>
<th>Component</th>
<th>Option 1:</th>
<th>Option 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>$128,292</td>
<td></td>
</tr>
<tr>
<td>IN</td>
<td>$128,292</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>$855,277</td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>$333,558</td>
<td></td>
</tr>
<tr>
<td>Total Investment</td>
<td>$1,445,418</td>
<td></td>
</tr>
</tbody>
</table>

*Assume 0% for ROW

<table>
<thead>
<tr>
<th>Component</th>
<th>Option 1:</th>
<th>Option 2:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC</td>
<td>$11,070,104</td>
<td></td>
</tr>
<tr>
<td>IN</td>
<td>$6,642,062</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>$44,280,415</td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>$18,097,774</td>
<td></td>
</tr>
<tr>
<td>Total Investment</td>
<td>$80,590,355</td>
<td></td>
</tr>
</tbody>
</table>

*Assume 10% for ROW
Where does this plan fit into the overall project?

Basic Project Timeline

Phase I
- Vision Plan
- Alternatives Analysis

Phase II
- Schematic Design
- Preliminary Engineering
- Final Design
- Bids

Planning

Engineering

Construction

IMPLEMENTATION
• Find the money

• Be patient. Be incremental.

• Continued dialogue with the development community and major land owners.
Thank you!

Douglas Robbins, AICP, PP
AECOM - Philadelphia Office
douglas.robbins@aecom.com
215-789-2082