Social Media and Urban Analytics

American Planning Association
Oct 20, 2015

Computer
Human
Interaction:

JT T Mobility
« Human- =y Privacy Jason Hong

IComputr_:r | Security A
Inseie [ @jasOnhOng

Carnegie Mellon




Smartphones are Pervasive

e 75% penetration in the
US as of late 2014

e About 1.7M Android
and iOS apps
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Over 85 billion apps
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Smartphones are Intimate

 Mobile phones and
millennials (cisco 2012):
* 75% use in bed before sleep
* 83% sleep with their phones

* 90% check first thing in the
morning

* Athird use in bathroom (!!)
* A fifth check every ten minutes
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Smartphone Data is Intimate

- Messaging 2
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ALL CONTACTS WITH PHONE NUMBERS
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Adam King
y (714) 654288 MOBILE

' ! Shelley Yi Zhang (917) 804-
'é d| (412) 576988 Mobile Hi Jason Any inexpensive place to.. Mar5
g 4 ¥ ¥ March 25 ' K

714 520 S HOME

Jerry Hong
m (LGEIE!)EIS-;?%I:A‘G‘M m Just landed, back in Pitt now. I'll.. N Mar 1
obile
\ 4 ¥ A< (4) March 24 :

Spam
:.-‘-:- Chou Hong / Jason, You have been hand select... Feb 18

= al ) (412) 491 M8 Mobile o
,L ¥4 < March 23 ' junkingturc;

(Brandon) Last hour your entry is F... Feb 18

I ! Shelley Yi Zhang -
'é dl (412) 576-%8 Mobile Adam King

¥ A €7 (4)March 21 y (No subject) ) Feb 16

Adrian Perrig
p (510) 87 2-GHbm MOBILE

412-877-8300

Agata Rozga
310 614 &z2% MOBILE

Agnes Chen

Jerry Hong

Who we call
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Who we text [°"°
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Smartphone Data is Intimate
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Jason Hong

First time here!
w

) First time here!

Jason Hong
ewell-Simon Hall

Jason Hong

Jason Hong

Where we go
(gps, foursquare)

o | AndroSensor

LOCATION:
Latitude: 40.436817
. Longitude: -79.918175
@‘ Altitude: 1048.4 ft
Accuracy: 64.5 ft

Provider: gps
Satellites in range: 0

ACCELEROMETER: (0.1TmA)
x:-1.0438 m/s?
y: 5.8597 m/s?
z: 7.9070 m/s?
2:9.8968 m/s?

GYROSCOPE: (6.1mA)

X:-0.0714 rad/s
Y: 0.0000 rad/s

Z:0.0064 rad/s

LIGHT: (0.8mA)
' 52.1243 lux

MAGNETIC FIELD: (4.0mA)
» X:104.5uT
Y:-75.3uT
Z:37.9uT
2:134.26 uT

ADICAITATIOA. /0 O A )

‘ Sensors
(accel, sound, light)

Google
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The Opportunity

* We are creating a
worldwide sensor
network with these
smartphones

? » We can now capture
§ and analyze human
behavior at
unprecedented
fidelity and scale
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The Challenge of Getting Data
About Our Cities

— * Today’s methods for getting city

data slow, costly, limited

— Ex. Travel Behavioral Inventory
_ — US Census 2010 cost $13b
PSR :  — Quality of life surveys

—< gl © Emerging approaches:
L — Installing sensors / cameras
— Call Data Records
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Understanding Urban Areas

e AT&T Work on Human Mobility
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Other Ways of Gathering Data?

e Call Data Records proprietary
* No easy access
* Hard to replicate

e Social Media is an alternative
* |Instagram: 80M photos per day

* Twitter: 500M tweets per day
* Foursquare/Swarm: 3-5M check-ins per day

Flickr: 1.6M photos per day

Small but non-trivial percent is geotagged
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Eric Fischer’s Maps of
Tourists vs Locals
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The Vision: Urban Analytics

e How can we use smartphones + social media +
machine learning to offer new and useful insights
about cities in a manner that is cheap, fast, and

scalable?
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Livehoods, Our First Urban Analytics Tool

The character of an urban area is defined not just
by the types of places found there, but also by the
people that make it part of their daily life
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A new way to understand
a city using social media
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Cranshaw et al, The Livehoods Project: Utilizing Social Media
to Understand the Dynamics of a City, ICWSM 2012.
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What comes to mind when you
picture your neighborhood?
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The Image of a Neighborhood

You’re probably not imagining this.
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The Image of a Neighborhood

What you’re imagining probably looks a lot more like this.
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LAS RESTAURANT

i

Every citizen has had long associations with
some part of his city, and his image is soaked in
memories and meanings.

---Kevin Lynch, The Image of a City
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Two Perspectives

“Politically constructed” “Socially constructed”

Neighborhoods have fixed Neighborhoods are organic,
borders defined by the city cultural artifacts. Borders are
government. blurry, imprecise, and may be

different to different people.
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Two Perspectives of Cities

Can we discover
automated ways of
identifying the “organic”
boundaries of the city?

Can we extract local
cultural knowledge from
soclal media?

Can we build a collective
cognitive map from data?

R
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“Socially constructed”
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Neighborhoods are organic,
cultural artifacts. Borders are
blurry, imprecise, and may be
different to different people.
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Livehoods Data Source

Check In

e Crawled 18m check-ins g
Resort

fro m fo u qu u a re 310 Mount Washington Hote..

The Cave Bar at Omni Mt.

— People who linked their e
foursquare accts to Twitter Moan wadtinon

310 Mount Washington Hote..

e Spectral clustering based The Gonseratory . o
oLun asninguon note
on geographic and social e
proximity N

The Spa in The Mount
Washington Hotel
308 Mt Washington Hotel Rd..

Gold Room at Bretton
Woods
Bretton Woods, NH
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Contactus  About the maps Pittsburgh

o

Welcome to Livehoods!

). Each dot on the map (@) represents a check-in
location. Groups of nearby dots of the same color
form a Livehood.

The shapes of Livehoods are determined by the

3 patterns of people that check-in to them. If many
of the same people check-in to two nearby
locations, then these locations will likely be part of
the same Livehood.

Bedford
Dwellings

Livehoods reveal how the people and places of a
city come together to form the dynamic character
5 of local urban areas.

Click on a location to learn about its Livehood.
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http://livehoods.org/

Shadyside
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Livehood #41

Character Related Stats

—_

Aggregate check-in statistics by day, hour, and type of place
reveal usage patterns of the Livehood.
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PNC Park
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Livehood #42

Character Related Stats

The popular check-in locations and the unique types of

places found in a Livehood teach us about its character.

Top five popular places

° PNC Park

o Allegheny General Hospital

e Andy Warhol Museum

o McFadden's
e Mullens Bar & Grill

Top five unique things to do here

o Baseball Stadium

Building
Home

Pub

Museum
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Evaluation

* Interviewed 27 locals
— Residents, urban planners, businesses
— Asked them to draw their mental maps of areas first
— Then showed them our maps and solicited feedback
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South Side Pittsburgh
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South Side Pittsburgh
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South Side Pittsburgh
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Carson Street runs along the length of
South Side, and is densely packed with
bars, restaurants, tattoo parlors, and

clothing and furniture shops. It is the most

popular destination for nightlife.
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South Side Pittsburgh

e am=
5 ey (285) g 2
= o, ] | =z
= Oy 5 5 =
o g 3 8 o
j @ 2 5 5 B,  Souh E 5
5 = ] Y2 = Oakland T =
g’ = = w & & = \“: E‘ . E
v < & U b} = £ w w B P
~ o] B} o o~ Whart, & = %,
- o [} e b B WWharton 5t o S
& oW a Z o Muricl St - i .
] = = @ Murnel 5t B Faom Way L Sadthsid
BI7) w @ Fox Way ocuthside
. £ Bingham St Bingham St Sidney 5t Flats
C; Cabot Way @ = —
o, oo o = G Uy (237) ECarsonSt  (837) Eroml 1T 3764
N g g (&27) @ B L raon St (837)  Doutle %
- W e — o R ay, - Wide Grill %
-?’35791 Sty Tt m @ Sarah 5t Sarah 5t Marning Carey Way 9,
w mF = =aran - ki . z o . s}
U."J,qpe o = L=, y & Larking Way Glory Inr Sareh 5¢ SpringHill Suites ‘?%
' I = ;] i Larkings way Pistsburgh
s, B —~-S5=zl 23 & = A B ane S & Southside Works
""C"o.-_h a s B - o £ Jane St 5 b
a0ks e ¥ el H,UPMC South - & s NaE
ol the 5 % @ Side Hospital & Mary g, o1 g @ @ w,
z “u 7, Side Hospita o Mary 5 Wiy, )
LS Ry Hartined 5t 3 Josephine 5 ]
S = £ UE S
i35 Me Lain St n Y e st
2=3 3 L = Gregony [
o z Eureka 5t E e Ja;;lul-mla Sr 2
o X _ W Al &0 y B
L —
L Excelsior St - B T nj "1'!-'.'.-)_.-.. e o5
Allentown S AT = 3 “
E Warringlan #48 % S¢ paul &t o
= Manton Way nngeto St g\'ﬁa
= Snirthaide

South Side Works is a recently built,
mixed-use outdoor shopping mall,
containing nationally branded apparel
stores and restaurants, upscale
condeminiums, and corporate offices.
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South Side Pittsburgh
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There is an small, somewhat older strip-
mall that contains the only super market
(grocery) in South Side. It also has a liquor
store, an auto-parts store, a furniture rental
store and other small chain stores.
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South Side Pittsburgh
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The rest of South Side is predominantly
residential, consisting of mostly smaller row
houses.
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South Side Pittsburgh

Livehoods Found in South Side

I'll show evidence in support of the Livehoods clusters in South Side,
and will describe the forces that people highlighted.

\)
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South Side Pittsburgh

LH8 vs LH9
_ “Ha! Yes! See, here is my division! Yay! Thank
Demographlc you algorithm! ... | definitely feel where the
Differences South Side Works, and all of that is, is a very
different feel.”

0\ O\ )
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South Side Pittsburgh

LH7 vs LHS8

Architecture &
Urban Design

\)

Southside
Riverfront P:

“from an urban standpoint it is a lot tighter on
the western part once you get west of 17th or
18th [LH7].”

v
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South Side Pittsburgh

LH7 vs LHS8 /“Whenever | was living down on 15th Street [LH7] | had \

to worry about drunk people following me home, but on

S afety 23rd [LH8] | need to worry about people trying to mug
you... so it's different. It's not something | had anticipated,

but there is a distinct difference between the two areas of

. the South Side.” Y,

Carnegie Mellon



South Side Pittsburgh

LHG6
Demographic
Differences

\

“There is this interesting mix of people there | don't
see walking around the neighborhood. | think they
are coming to the Giant Eagle [grocery store] from

lower income neighborhoods... | always assumed
they came from up the hill.”

N\ i
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South Side Pittsburgh
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South Slde Plttsburgh
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Brooklyn Queens Expressway
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repeat proportion

Other Potential Urban Analytics

Whole Foods Market
Number Users: 4 6K
repeat proportion: 0.8

°

Disneyland Park
Number Users: 58 .9K
repeat proportion: 0.6

O "‘:' e ®
. ®
O :— o ®
" ° @ | vankee Stadium
® Number Users: 42.9K
o _* &
0.4 - : = N ® repeat proportion: 0.5
Y
- The White House
03 - Number Users: 23K

repeat proportion: 0.2

003

|
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rsity

a

San Francisco International Airport (SFO)
Number Users: 145K
repeat proportion: 0.7

Number Users: 79 6K
repeat proportion: 0.6

Philadelphia International Airport (PHL) ]

OK 20K 40K 60K

Number Users

ME-ERR-VIS-029 Not shown:2 null/zero tems
R
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100K
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Topic Modeling (LDA)

Tourists — far
away point is
=~ airport
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Analysis of Geotagged Tweets

in Pittsburgh
Top 3 Emojis per Neighborhood Top 10 Words per Neighborhood

Neighborhood Names

46

Clear Map

) gs northside paxs B
\"' jus allegheny royal
swole hazlett nikolaus rivers o
| _barrethouse _Vote ; &
association
! troy 7/ :;
= 5 mattress deutschtown la / -
t contemporal sgends heinz
n fagtory mousetrap /7 harmya,
rimanti ;
N / // / sailors :‘
v ¢
#pirates twentieth
- roland's
caing’ #steelerfUIO convention . distrl}cths cathedral
e boardpi warhol = marty’s oakland
. steelesgnny #scoreboardpix ol
4 ae ) lawrence o= ulu's
noming ) A pirates ™ museum " butterjoint
y joe y park an professor
- m:'(:[a #pncpark david e
white #letsgobucs clemente 10a
chris roberto ~.. mellon
asf gastropub s wyndham
gat reboardpix ruskin
e trends f #pittpanthers
ountry kt #tweetmyjobs cathedral
S IS : /
n b3 conbourse \hr:pr:'dlty :fasl')g" phipps
comcast incline cafe " < JODS. —— \ university ;
windch ittsbi
duquesne square #‘o — /g?s'::icturgh !
antney's grandvigg shaek \pi{ssure . P it = hofbruhausbOI(anK;aI
i _— _ _ N oaklan
crafton |s:;|t|l,:’: appeapet—— ——— g . hofbrauhaugardens
westwood R “claddaghy, camegie
. buca N
pennyslvania bae \ hofbr
greentree 7 meting #aeostyle
_marketing orab ‘bucs
ey tunnel overlook carson staatliches -
buffet fort washington authside TRNCREE
A 376 incline saloon tlee
parkway traffic mt Sioel oakland
tunnels mount bouta head's
parkway sheraton L] slopes mario's ~ Map data ©2015 Google ' Terms of Use | Report a map error

Carnegie Mellon



Analysis of Geotagged Tweets
in Pittsburgh
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Analysis of Geotagged Tweets
in Pittsburgh
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Analysis of Geotagged Tweets

in Pittsburgh
Neighborhood Names Top 3 Emojis per Neighborhood Top 10 Words per Neighborhood
3 () ) \\A
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Analysis of Geotagged Tweets
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Reflections on Urban Analytics
Potential Biases in the Data?
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Reflections on Urban Analytics
Potential Biases in the Data?

e Socioeconomic bias
— Little foursquare data in lower socioeconomic areas
— (Less of a problem with Twitter though)

 Urban bias

— Social media more active per capita in cities
* Age and gender bias

— Most young, male, technology-savvy

* Is this a problem that will solve itself with time?

_— Or, can we address this in our models?

Or, use multiple sources of social media data
Carnegie Mellon
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Reflections on Urban Analytics
Privacy Concerns?

e Publicly visible data without requiring logins

— No IRB issues

e Removed venues labeled as “home”

— We only received one request to remove a venue
from Livehoods (wasn’t labeled as a home)

 We only show data about geographic areas vs
individuals

— Can’t identify behaviors of specific individuals

But still many other questions

m Carnegie Mellon
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How Much Can Be Inferred?

Tourists — far
away point is
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How Much Can Be Inferred?

* Very likely much more can be inferred using rich
data like this
— Demographics, socioeconomic, friends
— Physical and mental health (depression)
— How “risky” you are (bars, clinics, etc)
* Unclear how far inferencing can go
— Also, not much can stop advertisers, NSA, startups,

— Even if an individual hides behaviors, can infer a lot
based on what other similar people are doing

m Carnegie Mellon
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How Much Can Be Inferred?

PEER-REVIEWED JOURNAL ON THE INTERMNET
EEEEEEEEEEEEEEEEEEEEEEEEEEEN

ABOUT LOGIN REGISTER SEARCH CURRENT ARCHIVES

ettt et et tee ettt et e et et Built a logistic regression
to predict sexuality based

on what your friends on
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Gaydar: Facebook friendships
expose sexual orientation

by Carter Jernigan and
Behram F.T. Mistree
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A New Kind of Redlining?

e “denying, or charging more for, services such
as banking, insurance, access to health care, ...
supermarkets, or denying jobs ... against a
particular group of people” (wikipedia)

@NEWS HOME VIDEO | US. | WORLD @ POLITICS | ENTERTAINMENT | TEC

=2 'GMA' Gets Answers: Some Credit Card
e Companies Financially Profiling Customers

Jan. 28, 2009
By CHRIS CUOMO, JAY SHAYLOR, MARY McGUIRT and CHRIS FRANCESCANI via

m"‘f\ m 4] [WrTweet (S| |3+ 3 =y B 1comment S
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sy ¢ Map of Philadelphia
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loans. (wikipedia)
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@NEWS HOME VIDEO US.  WORLD | POLITICS | ENTERTAINMENT @ TEC

'GMA' Gets Answers: Some Credit Card
Companies Financially Profiling Customers

;znéiii'lzi’ZOUgOMO. JAY SHAYLOR, MARY McGUIRT anc CHi JOhnson Says hIS JaW
dropped when he read one

i Like REH “ wiweet =/ 849 of the reasons American
Express gave for lowering
his credit limit:

"Other customers who have
used their card at

establishments where you
recently shopped have a
poor repayment history
with American Express."
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Moving Forward

* At early stage, but lots of potential for
understanding wide range of behaviors for cities

— Business analytics, use of city resources (parks),
how neighborhoods change over time, health care,
location efficiency, and much more

* Many open questions too
— Creating and validating models
— Privacy, inclusiveness, benefiting all citizens

m Carnegie Mellon
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Tiramisu Bus Tracker App

Forbes Ave opp Craig

* People can see
incoming bus data o

. FRoute B1A Trpd! 916
* People can also share info 2% ™ © =

610 | Forbes Ave opp Craig

— Got on bus o
— Hseats availab|e 61B | Forbes Ave at Murray
* Can we create new kinds 61B|_ s =
inbourd | =Y Btk ‘ S

of tools that can engage  §1a
people to be active o
citizens?

ey




Thanks!

Would love to hear your feedback
and ideas!

More info at cmuchimps.org
or email jasonh@cs.cmu.edu

Special thanks to:

e Justin Cranshaw ¢ Emily Su
e Dan Tasse e Jennifer Tchou
* Hyun-Ji Kim

Gy

Computer Human Interaction:
Mohility Privacy Security
hitp://cmuchimps.org
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64

Carnegie Mellon



How can we create
a connected world we
would all want to live in?

(--y) Computer

Carnegie £ aman
Mell(mg ‘- M,,,yy

Security
)

University =




How Much Can Be Inferred?

Cheome-
skull accessopies

were in the top 1 percent of
products signaling a risk
of default among 85,000 types of

purchases analyzed.

Peemium

wild bicdseed

was in the bottom 1 percent of products
signaling a risk of default among 85,000 types
of purchases analyzed.




Who Gains From this Data?

* Today, most data only flows one way
— Mainly to advertisers (and NSA)

— Also banks, insurance, credit cards

67
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Who Gains From this Data?

 Can we design systems that share
the value across more people?
— People co-create data and gain value
— Participatory design philosophy

 Can we also make
people feel more
invested in the
cities they live in?

ey
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Summary

 Smartphones and cloud computing offer big
opportunity to understand human behavior

* Also pose many large challenges, in privacy and
ethics

e But I’'m optimistic
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— AdaBoost: Full Model

AdaBoost: Loc. Diversity, Specificity, Structural Prop.
- = AdaBoost: Intensity and Duration

Thresholding NumColocations

Recall
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Using Location Data to
Infer Friendships

 2.8m location sightings of T —
489 users of Locaccino g
friend finder in Pittsburgh R

« Place entropy for inferring
social quality of a place
— #unique people seen in a place

~0.0002 x 0.0002 lat/lon grid, Lo i
~30m x 30m

Cranshaw et al, Bridging the Gap Between Physical Location and
Online Social Networks, Ubicomp 2010

@ =
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Inferring Friendships

« 67 different machine learning features
— Location diversity (and entropy)
— Intensity and Duration
— Specificity (TF-IDF)
— Graph structure (overlap in friends)

« 929% accuracy in predicting friend/not

— Location entropy improves performance
over shallow features like #co-locations

—
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