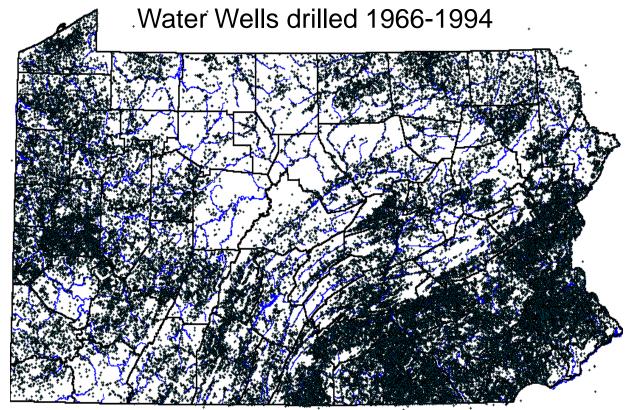
Planning for Private Drinking Water Supplies

Bryan Swistock
Water Resources Specialist
Penn State Extension

Peter Wulfhorst, AICP Extension Educator, Pike County

About Cooperative Extension

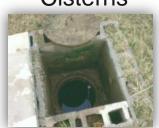
Providing factual information and education from unbiased research



The Pennsylvania State University is committed to the policy that all persons shall have equal access to programs, facilities, admission, and employment without regard to personal characteristics not related to ability, performance, or qualifications as determined by University policy or by state or federal authorities. It is the policy of the University to maintain an academic and work environment free of discrimination, including harassment. The Pennsylvania State University prohibits discrimination and harassment against any person because of age, ancestry, color, disability or handicap, national origin, race, religious creed, sex, sexual orientation, gender identity, or veteran status. Discrimination or harassment against faculty, staff, or students will not be tolerated at The Pennsylvania State University. Direct all inquiries regarding the nondiscrimination policy to the Affirmative Action Director, The Pennsylvania State University, 328 Boucke Building, University Park, PA 16802-5901; Tel 814-865-4700/V, 814-863-1150/TTY.

Private Water Supplies

- Over one million homes and farms
- 45% never properly tested
- Access to groundwater but not ownership
- No statewide regulations but some local ordinances


Wells

Springs

Cisterns

Private Water Systems Statistics for Some Counties

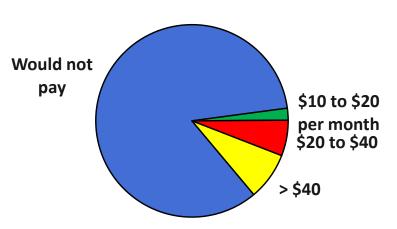
	# of homes private wate	-	% of homes			
County	1980	2000	using wells, springs	% drilled wells	% hand- dug wells	% springs
Adams	13,231	19,649	55	88	7	5
Armstrong	13,240	14,442	44	69	9	22
Bedford	12,027	18,621	70	81	7	12
Cambria	8,574	9,830	14	65	12	23
Carbon	6,594	17,876	45	91	6	3
Centre	6,885	10,939	19	69	9	22
Chester	42,075	58,969	36	91	7	2
Clarion	8,241	12,505	58	55	12	33
Clinton	3,536	6,692	31	54	7	39
Erie	21,384	24,224	21	77	20	3
Indiana	15,196	17,160	47	73	9	18
Monroe	21,129	53,363	68	93	5	2
Pike	9,441	24,309	55	92	6	2
Washington	19,290	19,858	23	66	5	29
Wyoming	7,236	10,078	73	85	5	10

Water Supply Characteristics

- Average well depth = 173 feet
 - o Range = 30 feet to 725 feet
- Well yield was generally adequate
 - Average = 18 gpm, 95% report no problems
- Only 10% have a well completion report
- 84% lack sanitary construction
 - Buried casing = 13% (some >1990)
 - Extended w/ Standard Cap = 62%
 - Extended w/ Sanitary Cap = 16%
 - Extended with other or missing cap = 9%
 - Evidence of grout = 18%
- 89% have on-lot septic, 28% never pumped

Swistock, B.R, S. Clemens, W.E. Sharpe and S. Rummel. 2013, Water quality and management of private drinking water wells in Pennsylvania. *Journal of Environmental Health*, 75(6):60-67.

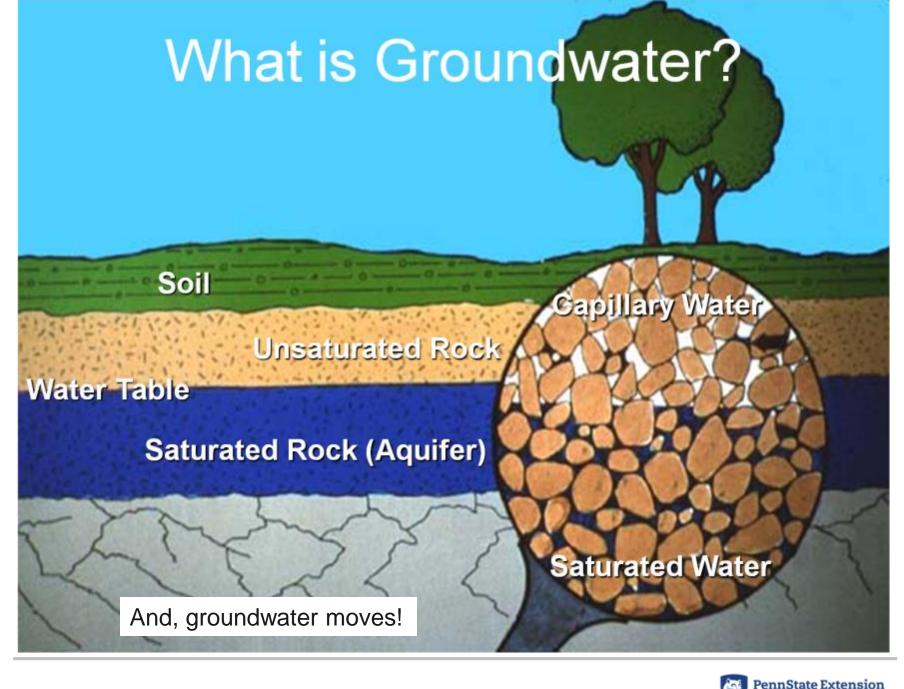
Water Well Owner Opinions

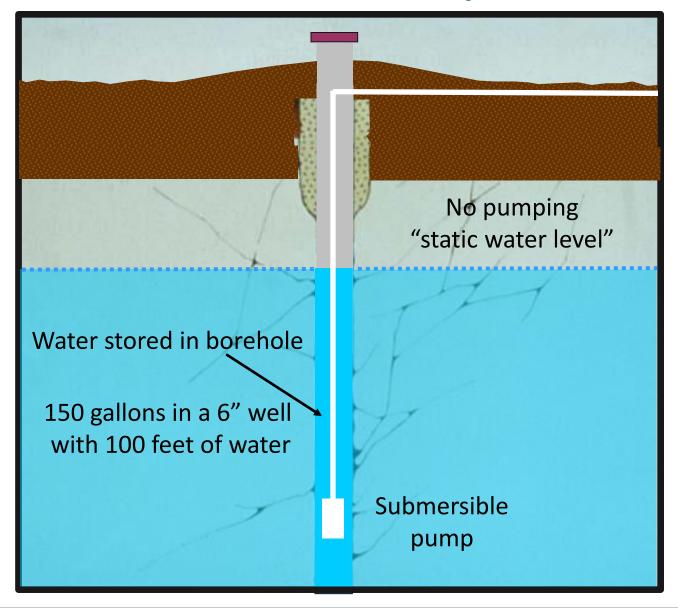

They Like Their Water Supply!

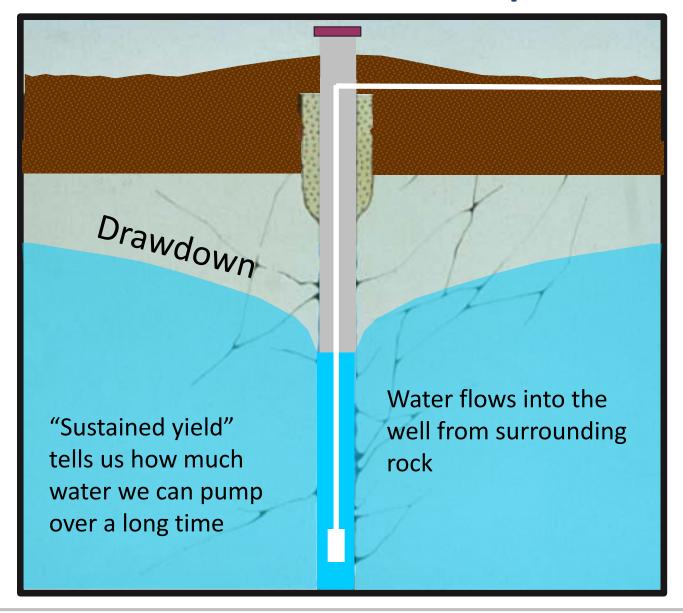
- 71% are satisfied with their well water quality
- 83% are satisfied with their well water quantity

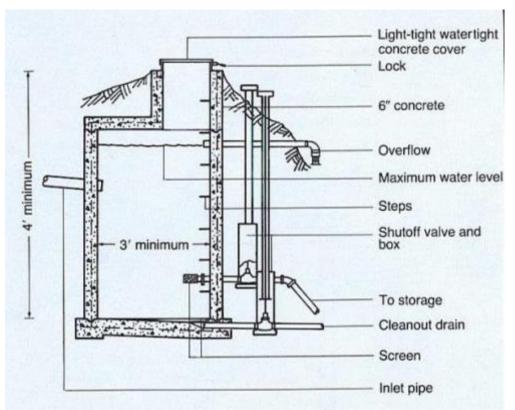
But They Have Concerns

- 64% of homeowners are very or somewhat concerned about their future water quality
- 39% are very or somewhat concerned about the future well water quantity
- Biggest perceived threats development, mining, gas/oil


How Much Would They Pay for City Water?


Swistock, B.R., S. Clemens and W. Sharpe. Drinking Water Quality in Rural Pennsylvania and the Effect of Management Practices. Center for Rural Pennsylvania, Final Project Report, January 2009. (http://www.rural.palegislature.us/drinking_water_quality.pdf).



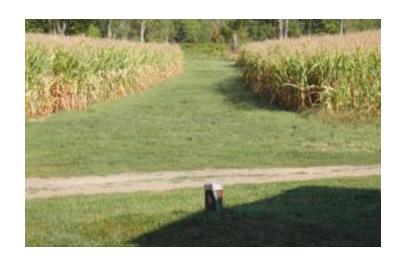

Water Well – Pump Off

When the Well is Pumped

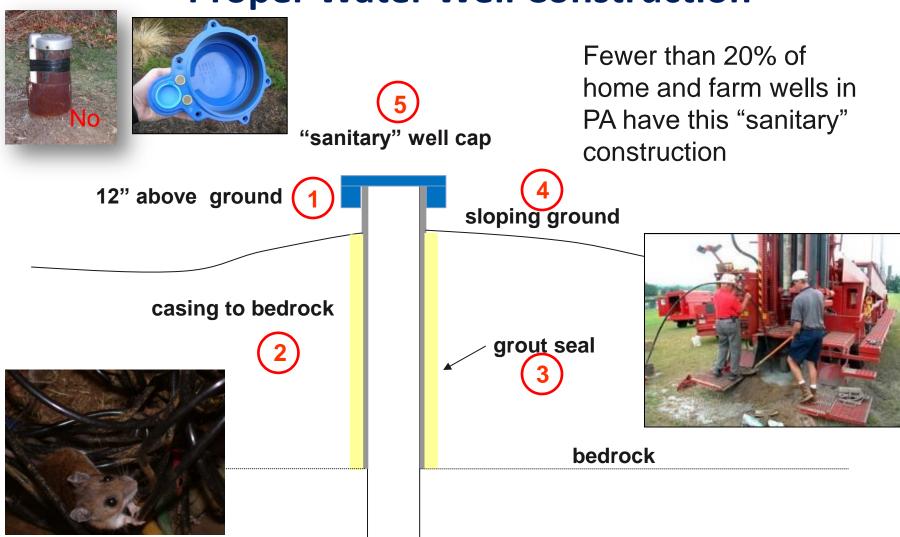
Spring Development

- Collection system to concentrate flow
- Reinforced and sealed concrete spring box
- Able to empty and clean
- Disinfection (75% contain coliform bacteria)

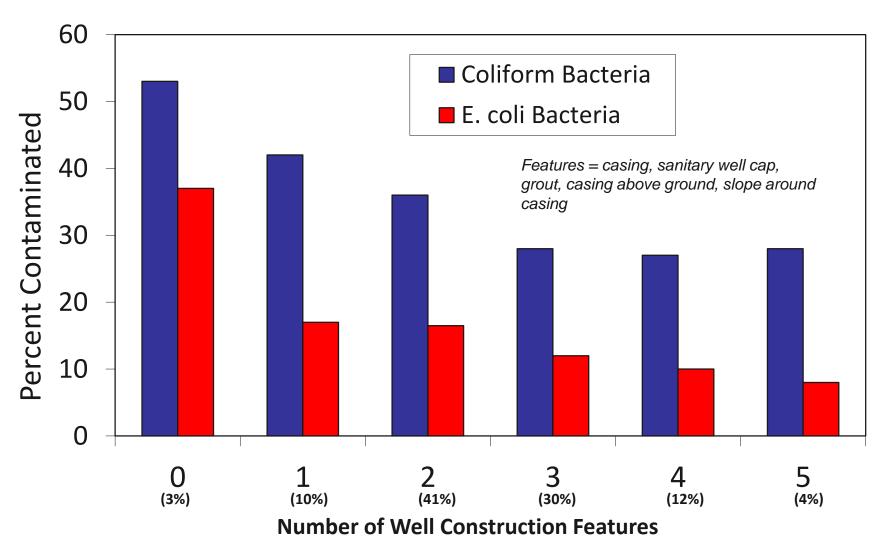
Springs are more susceptible to drought, bacteria, and surface activities


Properly Locate the Water Supply

 Upslope and away from potential sources of contamination


At least 100 feet from septic drainfields

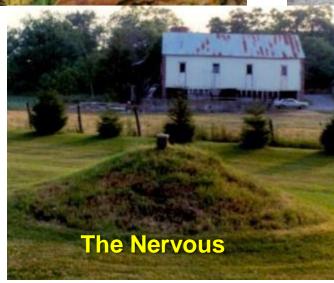
 Away from runoff, roads, neighbors' wells, and property lines



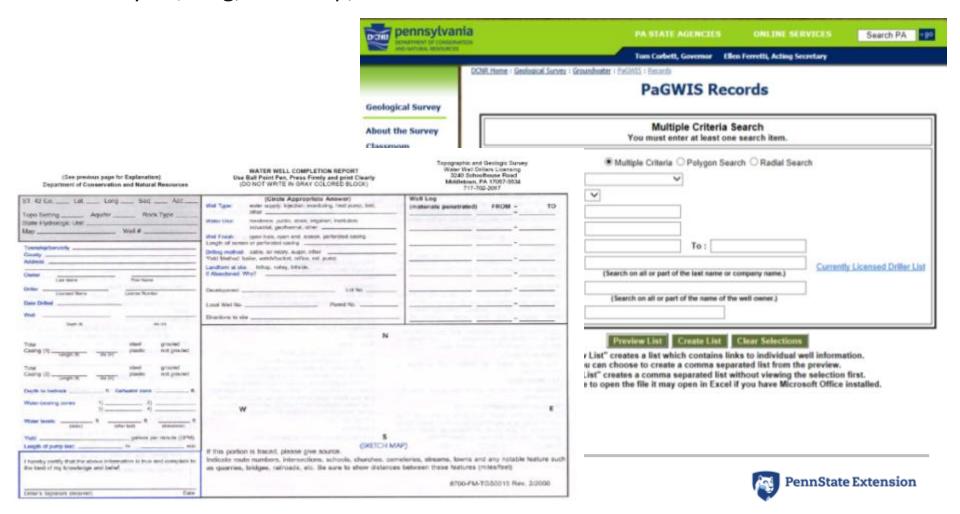
Preventing Problems with Proper Water Well Construction

Well Construction Affects Water Quality

Swistock, B.R, S. Clemens, W.E. Sharpe and S. Rummel. 2013, Water quality and management of private drinking water wells in Pennsylvania. *Journal of Environmental Health*, 75(6):60-67.


Other Examples

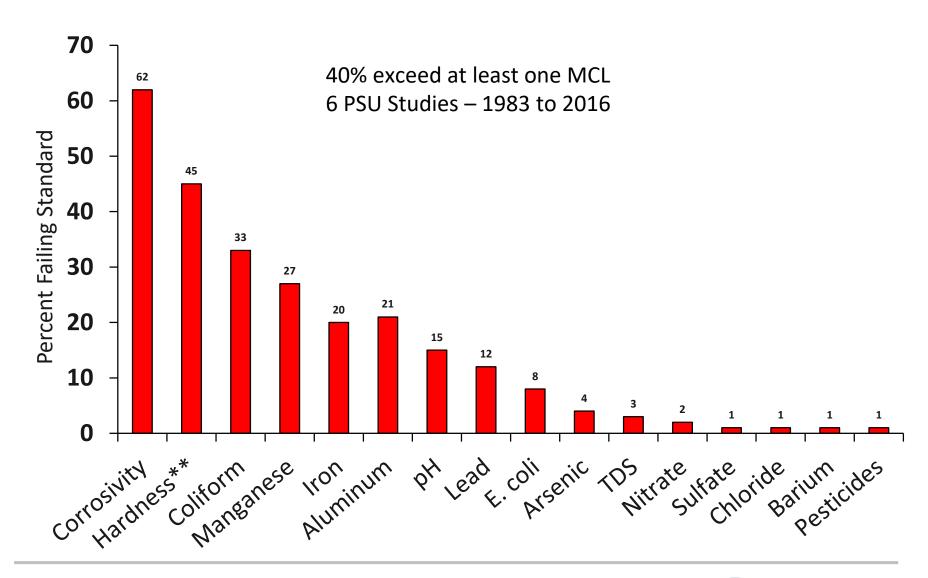
The Bad



Well Completion Report ("Well Log")

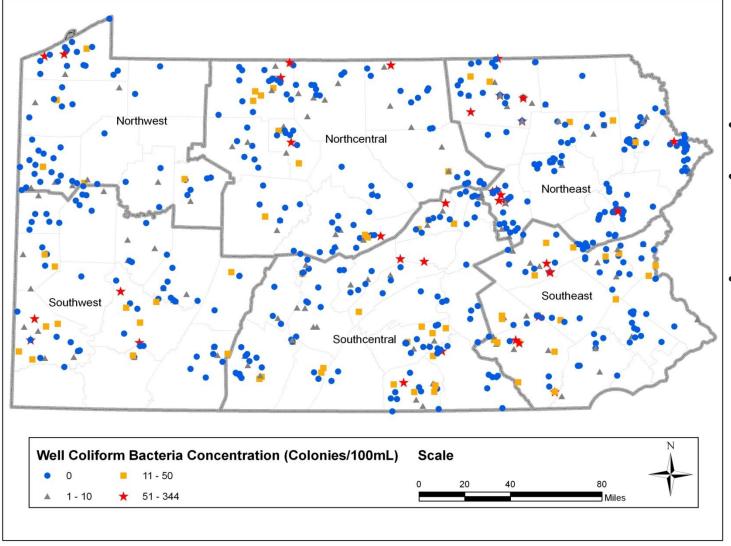
- Info about depth, rock layers, aquifers, construction features.
- Check with the well driller for a copy
- PA DCNR Groundwater Info System has some records online. Search for "PA GWIS", search by lat/long, township, date.

Protecting and Testing Your Water Supply



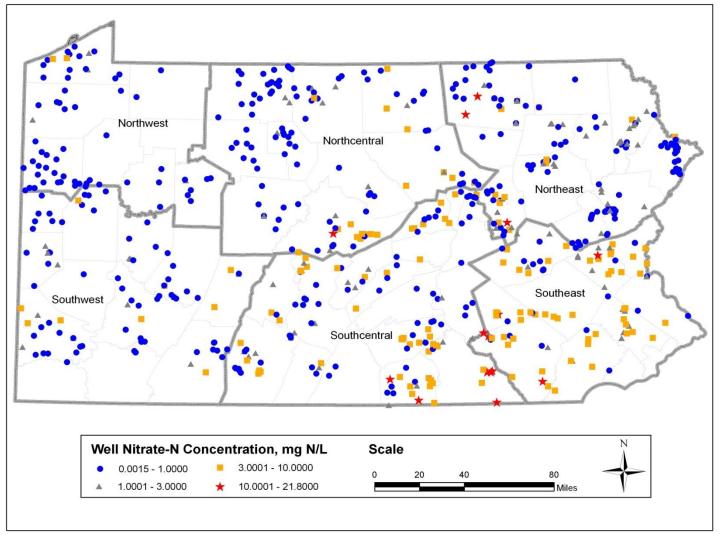
Have the Water Supply Inspected

- Keep area clear, protect from vehicles
- Inspect regularly for damage
- Professional inspection every 10 years
- Keep records yourself



Prevalence of Water Quality Problems

Wellhead Issues


(Total Coliform Bacteria)

- 33% exceed MCL
- Correlated to water well location and construction
- Source tracking indicates mostly animal sources

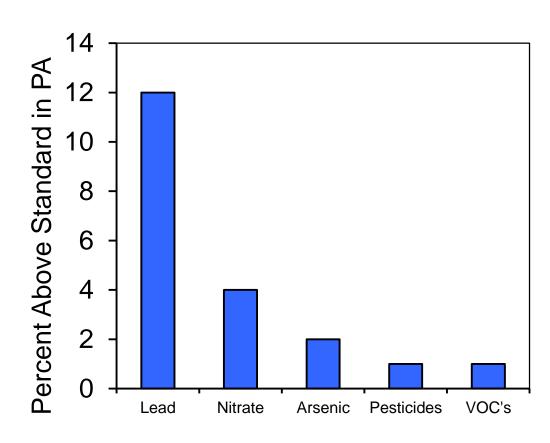
Land Use Issues

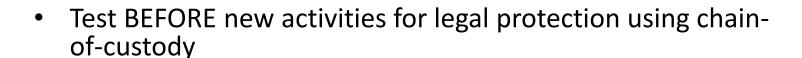
(Nitrate-Nitrogen)

- 2% exceed MCL
- Regional occurrence
- Correlated to water well location, land use and geology

Home Plumbing Issues

(Lead and Copper)


- Nearly always comes from plumbing system (pre-1990's)
- Lead causes many health effects especially in young children
- Drinking water standard = 0.015 mg/L
 - 12% exceeded standard statewide
 - >95% from plumbing corrosion
- Removal options
 - Flush pipes (if running water copper is below standard)
 - Corrosion control (if copper is coming from plumbing)
 - Plumbing system replacement (to plastic)
 - Reverse osmosis (does not address plumbing damage)
 - Bottled water

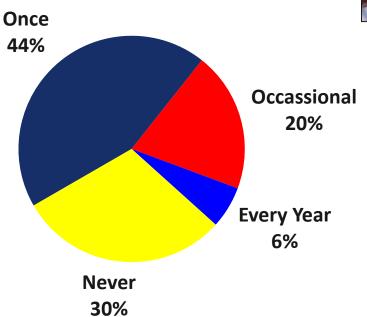

Other Contaminants with Health Standards

- Most related to human activity
 - Lead from corrosion
 - Arsenic natural too
 - VOCs = volatile organic compounds
 - Pesticides no single test
- Serious health effects
- Most have no obvious taste/smell/color

Test Your Water!

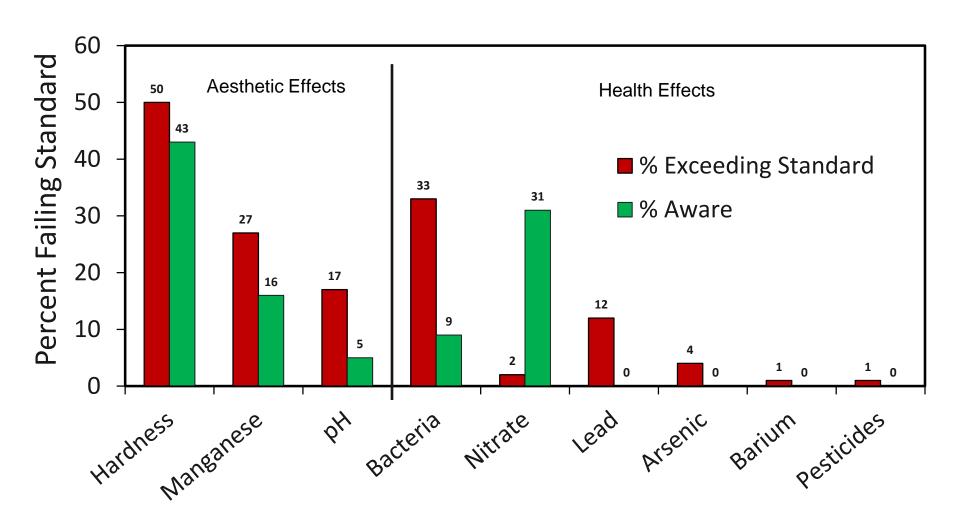
- Why test? Many pollutants have no obvious symptoms
- Many water supplies have never been properly tested
- Use PA DEP accredited laboratories!

- Test recommendations
 - Annual test for bacteria (every 14 months)
 - Every three years for pH, TDS, pollutants associated with activities within sight
- Compare test results to drinking water standards



A Lack of Water Testing Creates Low Awareness of Existing Water Quality Problems

Testing Frequency


Testing Location

Private Lab	62%
Treatment Co.	21%
DEP	9%
Test Kits	8%
Other	7%
Water Co.	3%

Swistock, B.R, S. Clemens, W.E. Sharpe and S. Rummel. 2013, Water quality and management of private drinking water wells in Pennsylvania. *Journal of Environmental Health*, 75(6):60-67.

Awareness of Pre-Existing Issues

Boyer, E., B.R. Swistock, J. Clark, D. Rizzo, M. Madden. Impact of Marcellus Gas Drilling on Rural Drinking Water Supplies, Final report to the Center for Rural Pennsylvania, 26 pp. Report available online at: http://www.rural.palegislature.us/documents/reports/Marcellus and drinking water 2012.pdf

Swistock, B.R., S. Clemens and W. Sharpe. Drinking Water Quality in Rural Pennsylvania and the Effect of Management Practices. Center for Rural Pennsylvania, Final Project Report, January 2009. (http://www.rural.palegislature.us/drinking_water_quality.pdf).

To Test or Not to Test

- 2011 study found 20% of private water supply owners would not pay >\$200 for a pre-drilling baseline water test
- Extension has run many free (grant funded) water testing programs over the past 30 years

- On MANY occasions, free testing has gone un-used
 - 2012 free extensive pre-drilling, chain-of-custody water tests offered to 800 of 57,000 homes (1.4%) – great difficulty giving away
- Indifference and the time needed to arrange testing are major issues
- Even where testing is done, 54 to 80% find the results difficult to understand

Client Am.				Work Order: Project Name: Project Namber: Received:	NTA053			
			ANALYTICAL	L REPORT				
Analyte	Result	Flag	Units	MRL	Dilution Factor	Analysis Date/Time	Method	Batch
Sample ID: NTA0535-01			- Ground W:	iter) Sampled:	01/10/10	16:00		
General Chemistry Parameters								
Bicarbonate Alkalinity as CaCO3	248		mz/L	10.0	1	01/12/10 17:38	SM 2320B	10A118
Carbonate as CaCO3	21.2		mg/L	10.0	1	01/12/10 17:38	SM 2320B	10A118
Chloride	13.2	E	mg/L	1.00	1	01/27/10 01:17	EPA 300.0	10A237
MBAS (mol.wt 320)	0.0985		mg/L	0.0500	1	01/12/10 14:07	SM5540 C	10A118
Oil & Grease HEM	ND		mz/L	5.81	1	01/21/10 13:08	EPA 1664A	10A249
pH	8.20	HTI	pH Units	0.100	i	01/13/10 14:00	SM 4500 H B	10A125
Specific conductance	532		umho/cm	10.0	1	01/21/10 10:37	SM2510 B	10A258
Sulfate	7.79		mz/L	1.00	i	01/27/10 01:17	EPA 300.0	10A237
Total Dissolved Solids	310		mg/L	20.0	1	01/14/10 15:31	SM2540 C	10A134
Total Suspended Solids	ND		mg/L	1.00	i	01/13/10 21:01	SM2540 D	10A133
Turbidity	ND		NTU	1.00	i	01/12/10 13:15	EPA 180 1	10A116
Temperature of pH determination	21.2	HTI	Deg C	NA	i	01/13/10 14:00	EPA 170.1	10A125
Methane, Ethane, and Ethene by GC								
Methane	3.55		mg/L	0.0520	2	01/18/10 13:47	RSK 175	10A145
Ethane	ND		mg/L	0.0260	1	01/18/10 12:59	RSK 175	10A145
Propage	ND		mg/L	0.0340	i	01/18/10 12:59	RSK 175	10A145
Star: Acatylana (70-122%)	103 %					01/18/10 1	2:59 RSK 175	10.414.
Total Metals by EPA Method 6010B								
Arsenic	ND		mg/L	0.0100	1	01/13/10 18:21	SW846 6010B	10A113
Barium	0.327		mg/L	0.0100	1	01/13/10 18:21	SW846 6010B	10A113
Cadmium	ND		mg/L	0.00100	1	01/13/10 18:21	SW846 6010B	10A113
Calcium	8.30		mg/L	1.00	1	01/13/10 18:21	SW846 6010B	10A113
Chromium	ND		mg/L	0.00500	1	01/13/10 18:21	SW846 6010B	10A113
iron.	0.0534		mg/L	0.0500	1	01/13/10 18:21	SW846 6010B	10A113
Lead	ND		mg/L	0.00500	1	01/13/10 18:21	SW846 6010B	10A113
Magnesium	3.72		me/L	1.00	1	01/13/10 18:21	SW846 6010B	10A113
Manganese	ND		mg/L	0.0150	1	01/13/10 18:21	SW846 6010B	10A113
Potassium	1.93		mg/L	1.00	1	01/13/10 18:21	SW846 6010B	10A113
Selenium	ND		mg/L	0.0100	i	01/13/10 18:21	SW846 6010B	10A113
Silver	ND		me/L	0.00500	i	01/13/10 18:21	SW846 6010B	10A113
Sodium	109		mg/L	1.00	i	01/13/10 18:21	SW846 6010B	10A113
Mercury by EPA Methods 7470A/74	71A							
Mercury	ND		mg/L	0.000200	1	01/20/10 10:22	SW846 7470A	10A169
Volatile Organic Compounds by EPA	A Method 8260B							
Benzene	ND		ug/L	0.500	1	01/13/10 02:30	SW846 8260B	10A050
Ethylbenzene	ND		ug/L	0.500	1	01/13/10 02:30	SW846 8260B	10A050
Toluene	ND		ug/L	0.500	1	01/13/10 02:30	SW846 8260B	10A050
Xvienes total	ND		112/L	0.500	1	01/13/10 02:30	SW846 8260B	10A050

Boyer, E., B.R. Swistock, J. Clark, D. Rizzo, M. Madden. Impact of Marcellus Gas Drilling on Rural Drinking Water Supplies, Final report to the Center for Rural Pennsylvania, 26 pp. Report available online at: http://www.rural.palegislature.us/documents/reports/Marcellus and drinking water 2012.pdf

Drinking Water Standards

- "Acceptable" level of the pollutant in drinking water
- Enforced for public water supplies by PA DEP
- Primary = health based (MCL)
 - Barium MCL = 2.0 mg/L
 - Lead MCL = 0.015 mg/L
 - Benzene MCL = 0.005 mg/L
- Secondary = aesthetic (RMCL or SMCL)
 - Chloride RMCL = 250 mg/L (salty taste)
 - Iron RMCL = 0.3 mg/L (red stains, metallic taste)

A Penn State Water Test Report

LAB ID	SAMPLE ID	REPORT DATE	DATE SAMPLED	SAMPLE TYPE	COUNTY
		12/20/2007	12/10/07	Drinking Water	Schuylkill

WATER ANALYSIS Trace Element Package (WD07)

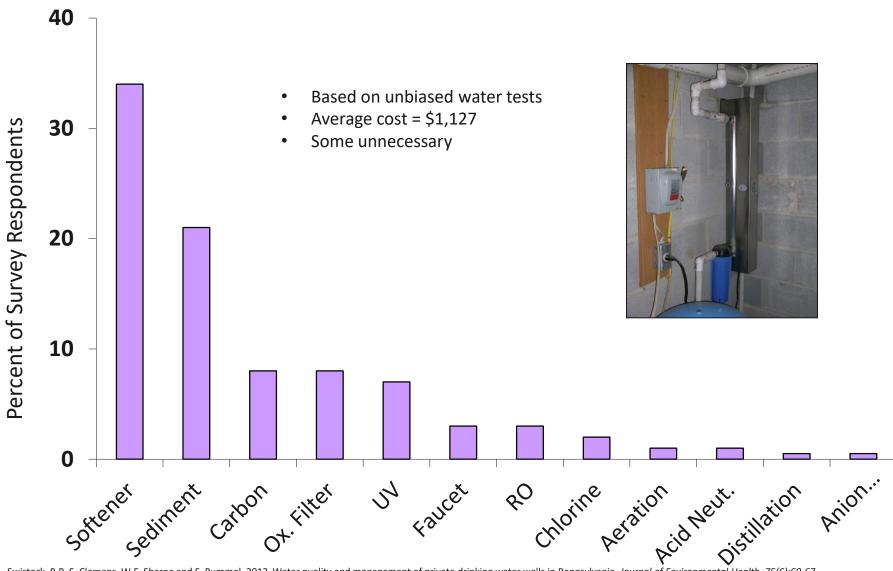
Analysis	Units	Your Test	Drinking Water	Method	
7, 7		Results	Standard	Туре	
Total Coliform Bacteria	MPN ² per 100 mL	18	0	Health	SM 9223B
E. Coli Bacteria	MPN² per 100 mL	None detected ³	0	Health	SM 9223B
рН	-	8.1	6.5 - 8.5	Aesthetics	EPA 150.1
Total Dissolved Solids (TDS)	mg/L	96	500	Aesthetics	SM 2540C
Arsenic (As)	mg/L	0.022	0.01	Health	EPA 200.9
Barium (Ba)	mg/L	< 0.002	2	Health	EPA 200.7
Cadmium (Cd)	mg/L	< 0.002	0.005	Health	EPA 200.7
Chromium (Cr)	mg/L	< 0.002	0.1	Health	EPA 200.7
Copper (Cu)	mg/L	< 0.01	1.3	Health	EPA 200.7
Lead (Pb)	mg/L	< 0.006	0.015	Health	EPA 200.9
Nickel (Ni)	mg/L	< 0.01	-	-	EPA 200.7
Mercury (Hg)	mg/L	< 0.0004	0.002	Health	7471
Zinc (Zn)	mg/L	< 0.05	5	Health	EPA 200.7

Water sample failed the drinking water standard for TOTAL COLIFORM BACTERIA.

Water sample failed the drinking water standard for ARSENIC.

For more details on your water test results, please see the description of each parameter on the back of this report and any fact sheets that may have been included with your results.

If you have any questions on your test report, please contact Bryan Swistock, extension associate, at 814-863-0194 (telephone) or brs@psu.edu (email) OR Tom McCarty, extension educator, at 717-240-6500 or trm3@psu.edu.


Solve Your Water Quality Problems

- New source
- Pollution control
- Maintenance or repairs
- Treatment
- Bottled

Explore all of them before taking action!

Water Treatment

Swistock, B.R, S. Clemens, W.E. Sharpe and S. Rummel. 2013, Water quality and management of private drinking water wells in Pennsylvania. Journal of Environmental Health, 75(6):60-67.

Whole House Treatment

Process	Treats
UV light	Bacteria
Chlorine	Bacteria, iron, sulfur
Softener	Hardness, some iron
Carbon filter	Organics, radon, sulfur
Sediment filter	Turbidity
Oxidizing filter	Metals, sulfur
Acid neutralizing filter	Low pH, corrosive water, lead, copper

Penn State Extension

Water Softener

Raw Water

(Calcium & Magnesium)

Resin

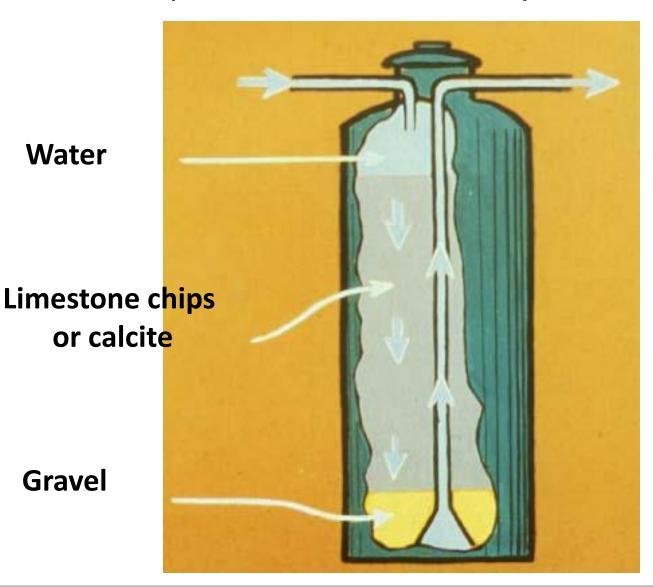
(Sodium or Potassium)

Treated Water

(Sodium or Potassium)

Carbon Filtration

Removes:

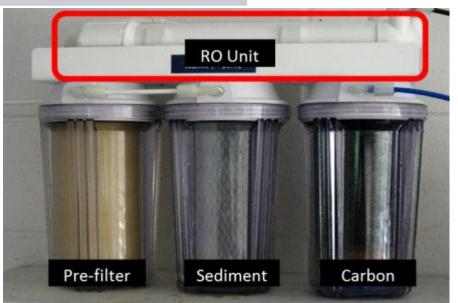

- Man-made organic chemicals
- Miscellaneous tastes
- Radon gas

 Carbon must regularly replaced and properly disposed

Acid (Corrosive Water) Control

Oxidizing Filters

Treat iron, manganese and hydrogen sulfide


Examples = greensand, birm

 Oxidize pollutant to a particle and then filter the particle from the water

Point of Use Treatment

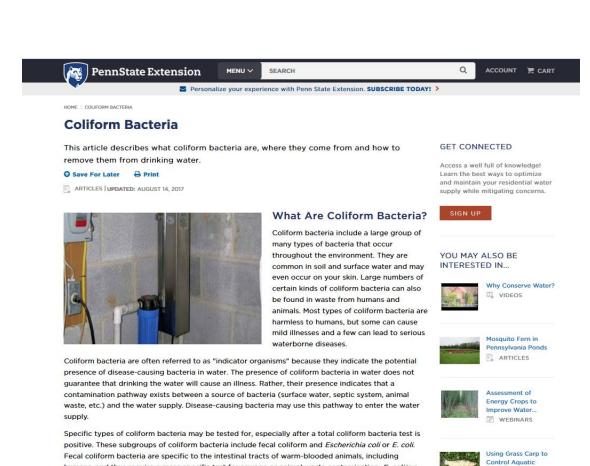
e.g., treat only kitchen tap

Process	Treats
Carbon filter	Chlorine, organics
Reverse Osmosis (RO)	Most solutes – Not bacteria
Distillation	Many except light organics

Buy Water Treatment Devices Carefully

- Rely on accredited lab results
- Look for NSF and WQA certifications for specific contaminants
- EPA certification means nothing (or water conservation)
- Seek reputable companies, references
- Beware of hard sale techniques (scare tactics)
- Ask questions. If it sounds too good it is!
- Ask about maintenance requirements (parts, chemicals, etc.)
- Get a detailed warranty in writing.

Penn State Cooperative Extension Resources



Overall Lessons Learned

- The need for education is great
 - A huge audience with many water quality problems
 - Awareness of issues is low (lack of testing, indifference, etc.)
 - Largely a reactive audience that lacks water quality data (difficult to reach)
- Education <u>CAN</u> make a difference
 - A high percentage of well owners make changes after education
- Innovative and diverse tools are needed to reach this large audience
 - Volunteer networks (MWON) can help with basic information
 - A mix of online and traditional tools
 - Expertise contacts for assistance
 - Teachable moments!

Online Articles

 Several dozen articles on various private water supply topics

humans, and thus require a more specific test for sewage or animal waste contamination. E. coli is a

type of fecal coliform bacteria commonly found in the intestines of animals and humans. A positive E.

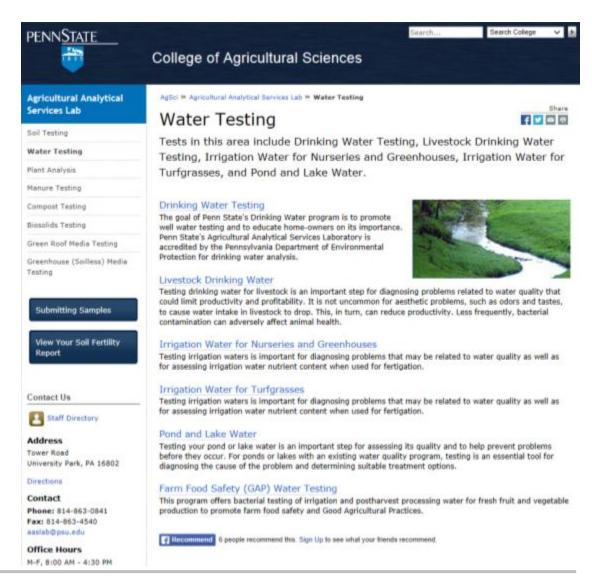
coli result is much more serious than coliform bacteria alone because it indicates that human or animal waste is entering the water supply. There are hundreds of strains of *E. coli*. Although most strains are harmless and live in the intestines of healthy humans and animals, a few strains can produce a

Health Effects of Coliform Bacteria

powerful toxin and can cause severe illness and death.

Plants

ARTICLES


Irrigation Water

Quality Guidelines for Turfgrass Sites
ARTICLES

Penn State Water Testing

 Kits available at most County Cooperative Extension offices

Ability to consult with drinking water experts

Private Water APP

 Diagnose water problems using symptoms

 Access all Penn State water testing records for a given county

 Find contact information for the closest Penn State Extension water educator (using phone location)



Search "H2OSolutions" App

Online Water Test Interpretation

 DWIT – Drinking Water Interpretation Tool

Water

Water Resources

edu/water

Extension Website

http://extension.psu.

Drinking and Residential Water

Make clean water a priority. Test and treat drinking water, build and manage a well, and improve water quality for you and your family. Conserve water and lower

Pond Management

Increase your pond expertise. Uncover educational content to help you build and manage a pond. Explore aquatic plants, invasive species, pond construction, and pond ecology.

Stormwater Management

Protect your home, business, property, and septic system from flooding and storm damage. Improve stormwater quality. Build cisterns, rain gardens, and more.

Wastewater Management

Discover educational content to help you build, maintain, and troubleshoot a private or industrial septic system.

Water for Agriculture

Use quality water for your crops and livestock. Discover nutrient management techniques, test and improve water quality, conserve water, and more.

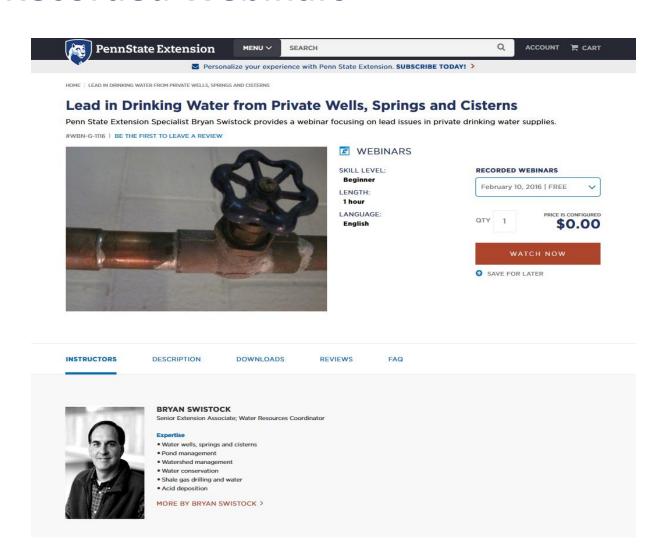
YOU MIGHT ALSO BE INTERESTED IN ...

Helping Realtors Understand On-Lot Wastewater Inspections

Managing Your On-Lot Septic System

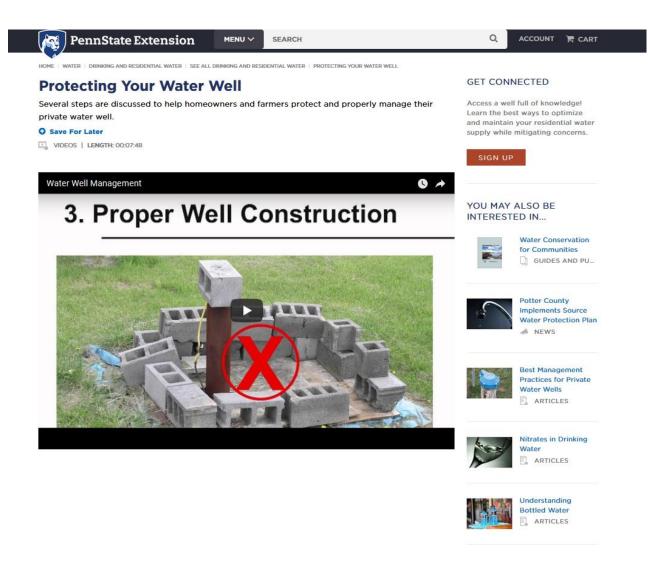
The Role of Trees and Forests in Healthy Watersheds

By Vincent Cotrone


Neighborly Natural Landscaping in Residential Areas

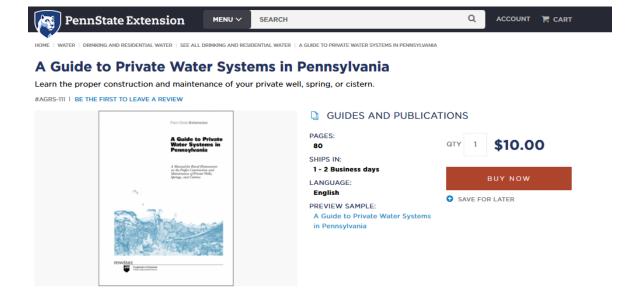
by Margaret C. Brittingham,

Recorded Webinars


- Free
- 30-45 minutes

Short Videos

• 3-7 minutes


Safe Drinking Water Clinics

- Best management practices
- 1 to 2 hours
- Onsite water testing

Detailed Manuals

DESCRIPTION INSTRUCTORS REVIEWS FAQ

Rural homeowners often face challenges in managing their water supply because, unlike public water supplies, managing private water systems is entirely the homeowner's responsibility. This manual is intended as a guide for private water system owners in Pennsylvania. From proper location and construction to recommended testing and treatment strategies, it will help homeowners make educated decisions about their water supply.

WHO IS THIS FOR?

Owners of private water systems; homeowners

WHAT WILL YOU LEARN?

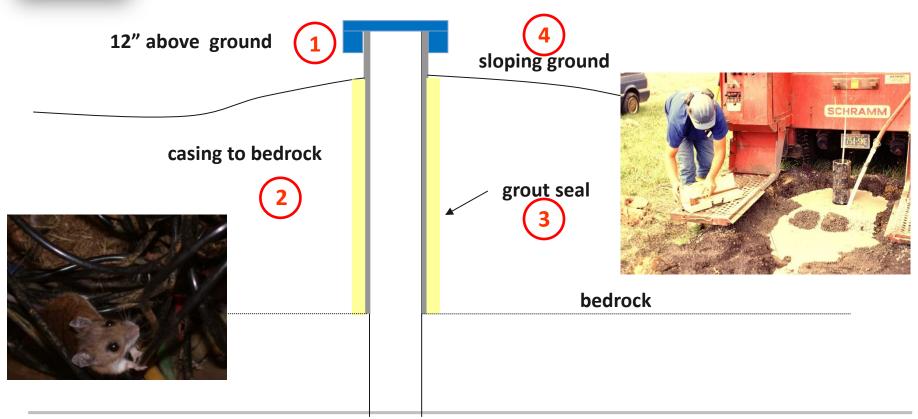
Hydrologic cycle; groundwater basics; threats to groundwater; estimating water needs; proper construction and management of private water wells; spring development and protection; rainwater cisterns; wellhead protection and land-use impacts; what you can do to protect groundwater; water testing and interpretation; components of a typical water test report; drinking water standards; common pollutants by category; solving water-quality problems;

Master Well Owner Network

Volunteer Training

- Funded by PA DEP and PGWA
- Objective more efficiently reach the large target audience by training an army of volunteers who can provide basic education on proper private water system management
- Provide 6-8 hours of instruction followed by exams and certification (signed policy statement)
 - Expectation volunteers will attempt to educate 50 private water supply owners annually
- 759 volunteers trained (about 230 active)
- Volunteers educate ~3,000 to 4,000 annually (~50,000 total)
- Over 100,000 indirect contacts (newsletters, etc.)

Volunteers Educate Others



Preventing Problems with Proper Water Well Construction

Fewer than 20% of home and farm wells in PA have this "sanitary" construction

Don't Get Carried Away!

Wellhead Protection

Isolation Distances - The following isolation distances shall be maintained from all water wells:

POTENTIAL POLLUTION SOURCE	MINIMUM REQUIRED ISOLATION DISTANCE (feet)
Animal enclosures and manure piles	100
Chemical preparation/storage area	300
Fertilizers preparation/storage area	300
Hazardous spray materials preparation/storage area	300
Lakes, ponds, streams	25
Landfill, existing, proposed, or abandoned	1,000
Septic tanks	50
Sewage disposal systems, subsurface	100
Property lines	10
Road right of way, public	25
Storm drains	25
Salt piles	300
Water well, existing	25

Construction Standards

The construction of all water wells in the Township shall conform to the following standards and such compliance shall be certified by the well driller in the well completion report. In cases where state or federal regulations are more stringent, such standards shall apply.

- A. Construction by Licensed Driller All water wells in the Township shall be constructed in accordance with PA Act 610 (Water Well Drillers License Act) by a well driller licensed by the Commonwealth of Pennsylvania.
- B. Disinfection Criteria The well owner shall disinfect a water well in accord with Attachment A prior to testing and prior to use. A statement that the well has been disinfected shall be submitted to the Township along with the Water Well Completion Report.

Construction Standards

Well Casing

Casing should extend ~12 inches above the ground (about 50% of wells meet this recommendation)

Casing Length

Minimum protective casing depth shall be forty (40) feet or fifteen (15) feet into bedrock, whichever is greater

Slope ground away from the well

Grouting

Grout Requirements –

All permanent water well casings shall be surrounded by a minimum of one and one-half (1.5) inches of grout to a minimum depth of at least five (5) feet below grade to effectively prevent contamination from ground surface sources.

Grouting materials shall comply with the standards established by the American Water Works Association in the most current AWWA Standard for Water Wells or as otherwise approved by the Township.

Picture courtesy of Todd Giddings, PA Ground Water Association

Sanitary "Vermin Proof" Well Cap

•16% of wells in PA have one – mostly in counties were required (Bucks, Chester, Montgomery)

• Include rubber gasket to seal the top of the casing.

•Slightly more expensive than standard well cap.

Well Completion Report

The Applicant or well driller shall, upon completion of the well, provide to the Township a copy of the Well Completion Report submitted to the Pennsylvania Department of Conservation and Natural Resources.

Bryan Swistock Extension Associate, Penn State Extension brs@psu.edu 814-863-0194

Peter Wulfhorst AICP, Extension Educator Penn State Extension ptw3@psu.edu 570-296-3400

